Решить уравнение модуль 2 х 2 7. Как решать уравнения с модулем

Содержание
  1. Уравнения с модулем. Подготовка к ЕГЭ по математике
  2. Ненаучное объяснение зачем нужен модуль числа
  3. Уравнения с модулем
  4. Решение уравнений с модулем вида |Х| = a
  5. Модуль всегда положителен либо равен нулю!
  6. Решения примеров для самостоятельной работы
  7. Решение иррациональных уравнений с модулем
  8. 1. Уравнения вида |X| = |a|
  9. 2. Уравнения вида |X| = |Y|
  10. 3. Уравнения вида |X| = Y
  11. Ответы:
  12. Метод интервалов в задачах с модулем
  13. Разработаем последовательность действий в таких примерах:
  14. Примеры:
  15. Модуль в модуле
  16. Метод интервалов
  17. Краткое изложение статьи и основные формулы
  18. Теперь тебе слово..
  19. Урок 4: Уравнения с модулем
  20. Модуль числа
  21. Решение уравнений с модулем
  22. Уравнения с модулем
  23. Слева модуль, справа число
  24. Переменная как под модулем, так и вне модуля
  25. Квадратные уравнения с заменой |x| = t
  26. Модуль равен модулю
  27. Два или несколько модулей
  28. Модуль числа знак, свойства, действия, как найти, примеры графиков
  29. Что такое модуль в математике
  30. Свойства модуля
  31. Модуль комплексного числа
  32. Как решать уравнения с модулем
  33. Уравнения типа |x| = a
  34. Уравнения типа |x| = |y|
  35. Уравнения типа |x| = y
  36. Решение неравенств с модулем
  37. Уравнения вида |x| = a
  38. Уравнения вида |x| = |y|
  39. Уравнения вида |x| = y
  40. Модуль разности
  41. Модуль отрицательного числа
  42. Модуль нуля
  43. Модуль в квадрате
  44. Примеры графиков с модулем
  45. Заключение

Уравнения с модулем. Подготовка к ЕГЭ по математике

Решить уравнение модуль 2 х 2 7. Как решать уравнения с модулем

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Надеюсь, ты уже усвоил тему «Модуль числа»? Давай кое-что быстро повторим перед тем как перейти к уравнениям с модулем. 

Ненаучное объяснение зачем нужен модуль числа

Модуль числа – это такая забавная концепция в математике, с пониманием которой у многих людей возникают трудности.

А между тем она проста как апельсин. Но чтобы ее понять, давай сначала разберемся зачем и кому он нужен. 

Вот смотри, ситуация первая.

В жизни, часто встречаются ситуации, где отрицательные числа не имеют никакого практического смысла.

Например, мы не можем проехать на машине “минус 70 километров” (мы проедем 70 километров, неважно, в каком направлении), как и не можем купить “минус 5 кг апельсинов”. Эти значения всегда должны быть положительными.

Именно для обозначения таких ситуаций математики придумали специальный термин – модуль или абсолютная величина. 

Ситуация вторая.

Ты покупаешь пакет чипсов “Lay's”. На пакете написано, что он весит 100 грамм. Но если ты начнешь взвешивать пакеты, вряд ли они будут весить ровно 100 грамм. Какой-то из них будет весить 101 грамм, а какой-то 99. 

И что, можно идти судиться с компанией Lays, если они тебе недовесили? 

Нет. Потому что Lays устанавливает допуск и говорит, что пакет будет весить 100 грамм, плюс-минус 1 грамм. Вот это “плюс-минус” – это и есть модуль. 

Ситуация третья.

В жизни вообще не бывает 100% точных величин. Всегда есть вот такие допуски. В зарплате, например: “Я согласен работать за 250 тыс рублей в месяц, плюс-минус 20 тыс!”  20 тысяч – это и есть модуль. 

А вообще для простоты запомни, что модуль это расстояние от нуля в любую сторону. 

Ну вот, повторили, а теперь давай поговорим об уравнениях с модулем.

Ненаучное объяснение зачем нужен модуль числа Решение уравнений с модулем вида |Х| = a Модуль всегда положителен либо равен нулю! Примеры для самостоятельной работы Решения примеров для самостоятельной работы Решение иррациональных уравнений с модулем Три типа уравнений с модулем 1. Уравнения вида |X| = |a| 2. Уравнения вида |X| = |Y| 3. Уравнения вида |X| = Y Теперь задачи для самостоятельного решения: Метод интервалов в задачах с модулем Разработаем последовательность действий в таких примерах: Краткое изложение статьи и основные формулы

Уравнения с модулем

Решение уравнений с модулем может быть самостоятельной задачей, но часто такие уравнения могут возникнуть при решении уравнений другого типа.

Например, квадратных.

Или иррациональных.

Вот пример подобной ситуации:

Видно, что в правой части – квадрат числа  :

Казалось бы, теперь достаточно просто убрать квадраты слева и справа, и получим линейное уравнение.

Но нет!

В таких ситуациях нужно быть предельно осторожным: ведь ты же помнишь простое правило:

  ?

Вот и появляется на сцене наш модуль:

Чтобы не теряться в таких случаях, давай разберемся, что из себя представляет решение уравнений с модулем.

Решение уравнений с модулем вида |Х| = a

Уравнения такого вида  решаем, основываясь на свойствах модуля, которые мы разобрали в теме «Модуль числа» .

Давай разбираться на примерах. Необходимо решить уравнение вида:

Что такое  ?

Это просто  , если   больше либо равно нулю, или  , если   меньше нуля.

То есть можно формализовано записать так:

А если вот такое уравнение:

Рассуждения аналогичные:

Эти рассуждения можно было и обойти, вспомнив основное свойство модуля:

Модуль всегда положителен либо равен нулю!

Если обобщить разобранные выше примеры, то можно написать общее правило для решения уравнений вида  :

Попробуем применить это правило для такого уравнения:

Выражение под знаком модуля изменилось, но на логике рассуждений это не отражается, поэтому давай решать уравнение, применяя наше правило:

В нашем примере под ” ” подразумевается ” “, а значение  . Зная это, получаем:

А если уравнение имеет вид:

Что-то меняется в рассуждениях? Конечно, нет! Ну, тогда давай решать его!

Уловил? Закрепим на примерах.

Решения примеров для самостоятельной работы

Точно так же как и в предыдущем примере уравнения с модулем  могут возникнуть при решении уравнений другого типа, например, иррациональных.

Решение иррациональных уравнений с модулем

Вот пример подобной ситуации:

 .

Мы могли бы раскрыть скобки, перенести все в одну сторону, привести подобные и решить обычное квадратное уравнение (например, через дискриминант).

Но здесь удобнее поступить по-другому! 

Заметим, что в правой части уравнения – формула сокращённого умножения квадрат суммы:

Тогда уравнение станет таким:

Казалось бы, теперь достаточно просто убрать квадраты слева и справа, и получим линейное уравнение.

Но нет!

Будь предельно осторожным: опять вспоминаем простое правило:  ?

И опять на сцене наш модуль:

 .

Чтобы не теряться в таких случаях, научимся решать уравнения с модулем (все три типа).

1. Уравнения вида |X| = |a|

Большинство уравнений с модулем можно решить, используя одно только определение модуля. Например:

Решите уравнение:

Что такое  ?

Это просто  , если  , или  , если  .

То есть:

Ответ:  

Другой пример:

Решите уравнение  .

Аналогично:

И правда, вспомним свойство №1:

 , то есть модуль всегда неотрицателен.

Итак, мы выработали общее правило решения простейших уравнений с модулем:

Ещё примеры (как обычно, пробуй решить их сам, потом смотри решения):

Решения:​

2. Уравнения вида |X| = |Y|

Если начнём раскрывать модули по определению, натолкнёмся на множество проверок: какое число больше нуля, какое меньше; в итоге получим большую совокупность, которая затем упростится.

Но можно сделать так, чтобы сразу было всё кратко.

Для этого вспомним свойство модуля №7:

 .

С помощью этого свойства можем избавляться от модулей:

Пример:

Решите уравнение  .

Решение:

Реши самостоятельно:

Ответы:

1.  

2.  

3. Уравнения вида |X| = Y

Отличие от первого типа уравнений в том, что в правой части тоже переменная. А она может быть как положительной, так и отрицательной.

Поэтому в её неотрицательности нужно специально убедиться, ведь модуль не может равняться отрицательному числу (свойство №1):

Пример:

Решите уравнение:  .

Решение:

Если пропустить проверку на неотрицательность правой части, можно ошибочно написать в ответе сторонние корни, и таким образом потерять баллы. Давайте проверим: действительно ли надо выбросить корень  ? Подставим его в исходное уравнение  :

  – неверно.

Ответы:

1.  

2.  

3.  

Решим квадратные уравнения   и  .

Дискриминант у них одинаковый:

 .

Итак, исходное уравнение равносильно системе

Ответ:  

Метод интервалов в задачах с модулем

Пример:

Решите уравнение:  

Решение:

Рассмотрим первый модуль  . По определению он раскрывается «с плюсом» (то есть выражение под модулем не меняется), если  , и «с минусом» (то есть все знаки меняются на противоположные), если  :

Аналогично и со вторым:

Проблема только в том, что теперь нам нужно рассмотреть очень много вариантов: по   варианта для каждого модуля, итого четыре разных, но похожих друг на друга, уравнения.

Если модулей будет не два, а три, получится уже   уравнений!

Можно ли как-то сократить количество вариантов?

Да, можно – ведь не все условия могут выполняться одновременно:   и   противоречат друг другу.

Поэтому нет смысла раскрывать второй модуль «с плюсом», если первый раскрыт «с минусом». Значит, здесь у нас на одно уравнение меньше.

Теперь систематизируем то, что мы только что выяснили, и….

Разработаем последовательность действий в таких примерах:

1. Определим корни подмодульных выражений – такие  , при которых выражения равны нулю:

2. Отметим корни выражений под модулями на числовой оси:

3. Подпишем у каждого из получившихся интервалов, какой знак принимает каждое из наших подмодульных выражений.

4. Для каждого интервала запишем и решим уравнение. Важно проследить, чтобы ответы соответствовали интервалу!

Примеры:

I.  . Здесь оба модуля раскрываем «с минусом»:

  – этот корень сторонний.

II.  . Здесь первый модуль раскрываем «с плюсом», а второй – «с минусом»:

  – этот корень попадает в «свой» интервал, значит, он подходит.

III.  . Здесь оба модуля раскрываем «с плюсом»:

  – этот корень тоже является решением.

Проверим полученные корни:

I.   (корень и правда сторонний).

II.  .

III.  .

Ответ:  

Модуль в модуле

В некоторых уравнениях встречается «вложенный» модуль, то есть модуль какого-то выражения является частью подмодульного выражения, например:

Что делать в таком случае? Все банально: раскрывать модули. Но раскрывать их нужно по очереди. Какой будем раскрывать первым?

А это зависит от того, каким методом ты хочешь решить это уравнение. Рассмотрим два возможных варианта:

I. Данное уравнение является уравнением вида  

В этом случае первый способ решения будет стандартным для такого типа:

  – подмодульное выражение – в нашем примере это   , то есть:

Получили два элементарных уравнения такого же типа, то есть:

Эти четыре числа и будут ответом, можешь проверить их подстановкой в исходное уравнение.

II. Есть ещё один, более универсальный способ, который подойдёт для любых задач, не попадающих ни в какой из стандартных типов.

Что это за метод?

Метод интервалов

В этом случае нужно раскрывать модули начиная с самых «глубоких», то есть «внутренних». В нашем случае внутренним будет модуль, выделенный красным цветом:

Чтобы раскрыть его, надо рассмотреть 2 случая: и , то есть уравнение распадается на два уравнения:

Краткое изложение статьи и основные формулы

Уравнения с модулем делятся на три вида, каждый вид имеет свой подход к решению:

1. Уравнения вида  

2. Уравнения вида  .

3. Уравнения вида  .

Теперь тебе слово..

Как тебе… про уравнения с модулем? Легкотня! )

Источник: https://youclever.org/book/uravneniya-s-modulem-2

Урок 4: Уравнения с модулем

Решить уравнение модуль 2 х 2 7. Как решать уравнения с модулем

План урока:

Модуль числа

Решение уравнений с модулем

Уравнения с параметрами

Модуль числа

Напомним, что такое модуль числа. Так называют значение числа, взятое без учета его знака. То есть модуль чисел 9 и (– 9) одинаков и равен 9. Для обозначения модуля применяют специальные прямоугольные скобки:

|9| = |– 9| = 9

|674| = |– 674| = 674

|2,536| = |– 2,536| = 2,536

Грубо говоря, операция нахождения модуля сводится к отбрасыванию у числа знака «минус», если он у него есть. Вообще, если число х неотрицательно, то его модуль |х| = х. Если же число отрицательно, то его модуль имеет противоположное значение: |х| = х. Математически это можно записать так:

Именно такое определение обычно и применяется в математике.

Модуль играет важную роль в математике. Дело в том, с его помощью удобно записывать расстояние между двумя точками на координатной прямой. Пусть на ней отмечены точки a и b. Расстояние между ними равно |a – b|, причем неважно, какое из этих чисел больше, а какое меньше:

Также модуль возникает при извлечении квадратного корня из четной степени числа:

В частности, если n = 1, получим формулу:

Для того чтобы получить график функции у = |x|, сначала надо построить график функции без учета знака модуля:

Далее следует выполнить преобразование. Те точки графика, которые располагаются выше оси Ох, остаются на своем месте. В данном случае это та часть графика, которая находится в I четверти. Те же точки, которые располагаются ниже оси Ох, должны быть симметрично (относительно этой самой оси Ох) отображены. В результате они окажутся выше оси Ох:

В результате получилась «галочка».

Пример. Постройте график ф-ции у = |х2 – 4х + 3|

Решение. Для построения графика функции, содержащей модуль, сначала надо построить график для «подмодульного» выражения. Поэтому построим график у = х2 – 4х + 3. Это квадратичная ф-ция, ее график – это парабола:

Часть графика, в промежутке от 1 до 3, находится ниже оси Ох. Чтобы построить ф-цию у = |х2 – 4х + 3|, надо перевернуть эту часть графика:

Только усвоенная информация становится знанием. В этом вам помогут онлайн-курсы

Перейти

Решение уравнений с модулем

Изучим простейший случай уравнения, содержащего модуль, когда вся его слева записано выр-ние в модульных скобках, а справа находится число. То есть уравнение имеет вид

|у(х)| = b

где b – какое-то число, а у(х) – произвольная ф-ция.

Если b< 0, то ур-ние корней не имеет, ведь модуль не может быть отрицательным.

Пример. Найдите корни ур-ния

|125×10 + 97×4– 12,56х3 + 52х2 + 1001х – 1234| = – 15

Решение: Справа стоит отрицательное число. Однако модуль не может быть меньше нуля. Это значит, что у ур-ния отсутствуют корни.

Ответ: корни отсутствуют.

Если b = 0, то мы получим какое-то произвольное ур-ние у(х) = 0, у которого могут быть корни. Проще говоря, модульные скобки в таком случае можно просто убрать.

Пример. Решите ур-ние

|13х – 52| = 0

Решение.

Ясно, что подмодульное выр-ние равно нулю:

13х – 52 = 0

13х = 52

х = 4

Ответ: 4.

Наиболее интересен случай, когда b> 0, то есть в правой части стоит положительное число. Ясно, что тогда под модулем находится либо само это число b, либо противоположное ему число – b:

|b| = b

|– b| = b

То есть мы получаем два различных ур-ния: у(х) = bи у(х) = – b.

Пример. Решите ур-ние

|х| = 10

Решение. В правой части – положительное число, поэтому либо х = – 10, либо х = 10.

Ответ: 10; (– 10).

Пример. Решите ур-ние

|10х + 5| = 7

Решение. Исходное ур-ние разбивается на два других ур-ния:

10х + 5 = 7 или 10х + 5 = – 7

10х = 2 или 10х = – 12

х = 0,2 или х = – 1,2

Ответ: 0,2; (– 1,2).

Пример. Найдите корни ур-ния

|x2– 2х – 4| = 4

Решение. Снова заменим исходное равенство на два других:

x2– 2х – 4 = 4 или x2– 2х – 4 = – 4

Имеем два квадратных ур-ния. Решим каждое из них:

x2– 2х – 4 = 4

x2– 2х – 8 = 0

D = b2– 4ас = (– 2)2 – 4•1•(– 8) = 4 + 32 = 36

х1 = (2 – 6)/2 = – 2

х2 = (2 + 6)/2 = 4

Нашли корни (– 2) и 4. Решаем второе ур-ние:

x2– 2х – 4 = – 4

x2– 2х = 0

х(х – 2) = 0

х = 0 или х – 2 = 0

х = 0 или х = 2

Получили ещё два корня: 0 и 2.

Ответ: – 2, 4, 0, 2

Встречаются случаи, когда в уравнении, содержащем знак модуля, под ним находятся обе части равенства:

|у(х)| = |g(x)|

Здесь возможны два варианта. Либо подмодульные выр-ния равны друг другу (у(х) = g(x)), либо у них противоположные значения (у(х) = – g(x)). То есть снова надо решить два ур-ния.

Пример. Решите ур-ние

|x2 + 2x– 1| = |х + 1|

Решение. Выр-ния справа и слева (без знака модуля) либо равны, либо противоположны. Можно составить два ур-ния:

x2 + 2x– 1 = х + 1 или x2 + 2x– 1 = – (х + 1)

х2 + х – 2 = 0 или х2 + 3х = 0

Решим 1-ое ур-ние:

х2 + х – 2 = 0

D = b2– 4ас = 12 – 4•1•(– 2) = 1 + 8 = 9

х1 = (1 – 3)/2 = – 1

х2 = (1 + 3)/2 = 2

Теперь переходим ко 2-омуур-нию:

х2 + 3х = 0

х(х + 3) = 0

х = 0 или х + 3 = 0

х = 0 или х = – 3

Всего удалось найти 4 корня: (– 1), (– 2), 2 и 0.

Ответ:(– 1), (– 2), 2, 0.

Возможен случай, когда в левой части равенства находится модуль выр-ния, а в правой – обычное выражение, без модуля. Такое ур-ние имеет вид |у(х)| = g(x). Здесь также возможны два варианта: у(х) = g(x) или у(х) = – g(x).

Однако следует учитывать ещё один факт. Модуль не может быть отрицательным, а потому должно выполняться нер-во g(x)⩾ 0. Но это неравенство не надо решать.

Достаточно просто подставить в него все полученные корни и проверить, справедливо ли нер-во.

Пример. Найдите решение уравнения, содержащего модуль:

|х2 + 3,5х – 20| = 4,5х

Решение. Рассмотрим два отдельных равенства:

х2 + 3,5х – 20 = 4,5х илих2 + 3,5х – 20 = – 4,5х

х2 – х – 20 = 0 или х2 + 8х – 20 = 0

Решим каждое из полученных квадратных ур-ний.

х2 – х – 20 = 0

D = b2– 4ас = 12 – 4•1•(– 20) = 1 + 80 = 81

х1 = (1 – 9)/2 = – 4

х2 = (1 + 9)/2 = 5

х2 + 8х – 20 = 0

D = b2– 4ас = 82 – 4•1•(– 20) = 64 + 80 = 144

х3 = (– 8 – 12)/2 = – 10

х4 = (– 8 + 12)/2 = 2

Итак, получили 4 корня: (– 4), 5, (– 10) и 2. Однако правая часть исходного ур-ния, 4,5x, не может быть отрицательной, ведь модуль числа – это всегда неотрицательная величина:

4,5х ≥ 0

Для х = – 4 и х = – 10 это условие не выполняется, поэтому эти корни должны быть исключены.

Ответ: 2 и 5

Мы рассмотрели три случая, когда ур-ние имеет вид:

  1. у(х) = b (b– это некоторая константа)
  2. |у(х)| = |g(x)|
  3. |у(х)| = g(x)

Однако порою ур-ние не удается свести ни к одному из этих видов. Тогда для решения уравнений и неравенств, содержащих модуль, следует рассматривать их на отдельных интервалах, где подмодульные выр-ния не изменяют свой знак.

Пример. Найдите корни ур-ния

|x + 1| + |x– 4| = 6

Решение. Выр-ния х + 1 и х – 4 меняют знак при переходе через точки (– 1) и 4:

Если отметить обе точки на прямой, то они образуют на ней 3 интервала:

Исследуем ур-ние на каждом из полученных промежутков.

Так как при х 4, выполняется равенство

|а – 4| = а – 4

Тогда имеем

а + 2 – (а – 4) > 0

6> 0

Это нер-во выполняется при любом допустимом значении а, поэтому при а >4 исходное ур-ние имеет 4 корня.

Если а < 4, то справедливо соотношение

|а – 4| = – (а – 4)

Тогда получится следующее:

а + 2 – |а – 4|> 0

а + 2 – (– (а – 4)) > 0

а + 2 + а – 4 > 0

2а > 2

а > 1

Итак, при условии, что а< 4, должно выполняться нер-во а > 1. Это значит, что а∊(1; 4). С учетом первого случая, при котором было получено решение

а > 4

можно записать окончательный ответ: а∊(1; 4)∪(4; + ∞).

Ответ: а∊(1; 4)∪(4; + ∞).

Пример. При каких параметрах а у ур-ния

х2 – 2(а + 1)х + а2 + 2а – 3 = 0

существует два корня, которые принадлежат интервалу (– 5; 5)?

Решение. Данное ур-ние является квадратным. Найдем его дискриминант:

D = b2– 4ас = (– 2(а + 1))2 – 4•1•( а2 + 2а – 3) = 4(а2 + 2а + 1) – 4(а2 + 2а – 3) =

= 4(а2 + 2а + 1 – а2– 2а + 3) = 4•4 = 16

Получаем, что при любом а дискриминант положителен, а потому уур-ния 2 корня. Вычислить их можно по формулам

Для того, чтобы оба решения уравнения с параметром принадлежали интервалу (– 5; 5), нужно, чтобы меньший из них (это х1) был больше – 5, больший (это х2) – меньше – 5:

Значит, должны выполняться два нер-ва

х1>– 5и х2– 5 и а + 3 < 5

а >– 4 и а < 2

Эти два нер-ва выполняются, если а∊(– 4; 2)

Ответ: (– 4; 2)

Онлайн-курсы по математике помогут подготовиться к ОГЭ наилучшим образом

Перейти

Источник: https://100urokov.ru/predmety/urok-4-uravneniya-s-modulem

Уравнения с модулем

Решить уравнение модуль 2 х 2 7. Как решать уравнения с модулем

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,

занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

или

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Ответ: 0; 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

1.

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

2.

Первый случай: x ≥ 3. Снимаем модуль:

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Второй случай: x < 3. Снимаем модуль:

Число . больше, чем , и потому не удовлетворяет условию x < 3. Проверим :

Значит, . является корнем исходного уравнения.

Ответ:

3.

Снимать модуль по определению? Страшно даже подумать об этом, ведь дискриминант — не полный квадрат. Давайте лучше воспользуемся следующим соображением: уравнение вида |A| = B равносильно совокупности двух систем:

То же самое, но немного по-другому:

Иными словами, мы решаем два уравнения, A = B и A = −B, а потом отбираем корни, удовлетворяющие условию B ≥ 0.

Приступаем. Сначала решаем первое уравнение:

Затем решаем второе уравнение:

Теперь в каждом случае проверяем знак правой части:

Стало быть, годятся лишь и .

Ответ:

Квадратные уравнения с заменой |x| = t

Решим уравнение:

Поскольку , удобно сделать замену |x| = t. Получаем:

Ответ: ±1.

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Решим уравнение:

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Ответ: [1; 2] ∪ {5}.

Модуль числа знак, свойства, действия, как найти, примеры графиков

Решить уравнение модуль 2 х 2 7. Как решать уравнения с модулем

Модуль числа легко найти, и теория, которая лежит в его основе, важна при решении задач.

Свойства и правила раскрытия, используемые при решении упражнений и на экзаменах, будут полезны школьникам и студентам.

Что такое модуль в математике

Модуль числа описывает расстояние на числовой линии от нуля до точки без учета того, в каком направлении от нуля лежит точка. Математическое обозначение: |x|.

Иными словами, это абсолютная величина числа. Определение доказывает, что значение никогда не бывает отрицательным.

Свойства модуля

Важно помнить о следующих свойствах:

  1. Правило раскрытия: абсолютная величина любого числа больше или равна нулю:
  2. Если абсолютные значения содержат выражения противоположных значений, они равны:
  3. Значение числа не превышает величину его модуля:
  4. Правило раскрытия при произведении:
  5. Правило, применимое при делении:
  6. При возведении в степень:
  7. Сумма величин:
  8. Двойной модуль:

Модуль комплексного числа

Абсолютной величиной комплексного числа называют длину направленного отрезка, проведенного от начала комплексной плоскости до точки (a, b).

Этот направленный отрезок также является вектором, представляющим комплексное число a + bi, поэтому абсолютная величина комплексного числа – это то же самое, что и величина (или длина) вектора, представляющего a+ bi.

Как решать уравнения с модулем

Уравнение с модулем – это равенство, которое содержит выражение абсолютного значения. Если для действительного числа оно представляет его расстояние от начала координат на числовой линии, то неравенства с модулем являются типом неравенств, которые состоят из абсолютных значений.

Уравнения типа |x| = a

Уравнение |x| = a имеет два ответа x = a и x = –a, потому что оба варианта находятся на координатной прямой на расстоянии a от 0.

Равенство с абсолютной величиной не имеет решения, если величина отрицательная.

Если |x| &lt, a представляет собой расстояние чисел от начала координат, это значит, что нужно искать все числа, чье расстояние от начала координат меньше a.

Уравнения типа |x| = |y|

Когда есть абсолютные значения по обе стороны уравнений, нужно рассмотреть обе возможности для приемлемых определений – положительные и отрицательные выражения.

Например, для равенства |x − a| = |x + b| есть два варианта: (x − a) = − (x + b) или (x − a) = (x + b).

Далее простая арифметика − нужно решить два равенства относительно x.

Уравнения типа |x| = y

Уравнения такого вида содержат абсолютную величину выражения с переменной слева от нуля, а справа – еще одну неизвестную. Переменная y может быть как больше, так и меньше нуля.

Для получения ответа в таком равенстве нужно решить систему из нескольких уравнений, в которой нужно убедиться, что y – неотрицательная величина:

Решение неравенств с модулем

Чтобы лучше понять, как раскрыть модуль в разных типах равенств и неравенств, нужно проанализировать примеры.

Уравнения вида |x| = a

Пример 1 (алгебра 6 класс). Решить: |x| + 2 = 4.

Решение.

Такие уравнения решаются так же, как и равенства без абсолютных значений. Это означает, что, перемещая неизвестные влево, а константы – вправо, выражение не меняется.

После перемещения константы вправо получено: |x| = 2.

Поскольку неизвестные связаны с абсолютным значением, это равенство имеет два ответа: 2 и −2.

Ответ: 2 и −2.

Пример 2 (алгебра 7 класс). Решить неравенство |x + 2| ≥ 1.

Решение.

Первое, что нужно сделать, это найти точки, где абсолютное значение изменится. Для этого выражение приравнивается к 0. Получено: x = –2.

Это означает, что –2 – поворотная точка.

Далее определяется знак на интервалах: на промежутке  величина будет отрицательной, а на интервале  будет положительной.

Разделим интервал на 2 части:

Общим ответом для этих двух неравенств является интервал [−1, + ∞).

Общим ответом для этих двух неравенств является интервал (−∞, –3].

Окончательное решение – объединение ответов отдельных частей:

x ∈ (–∞, –3] ∪ [–1, + ∞).

Ответ: x ∈ (–∞, –3] ∪ [–1, + ∞).

Уравнения вида |x| = |y|

Пример 1 (алгебра 8 класс). Решить уравнение с двумя модулями: 2 * |x – 1| + 3 = 9 – |x – 1|.

Решение:

Ответ: x1 = 3, x2 = − 1.

Пример 2 (алгебра 8 класс). Решить неравенство:

Решение:

Уравнения вида |x| = y

Пример 1 (алгебра 10 класс). Найти x:

Решение:

Очень важно провести проверку правой части, иначе можно написать в ответ ошибочные корни. Из системы видно, что  не лежит в промежутке .

Ответ: x = 0.

Модуль разности

Абсолютная величина разности двух чисел x и y равна расстоянию между точками с координатами X и Y на координатной прямой.

Пример 1.

Пример 2.

Модуль отрицательного числа

Для нахождения абсолютного значения числа, которое меньше нуля, нужно узнать, как далеко оно расположено от нуля. Поскольку расстояние всегда является положительным (невозможно пройти «отрицательные» шаги, это просто шаги в другом направлении), результат всегда положительный. То есть,

Проще говоря, абсолютная величина отрицательного числа имеет противоположное значение.

Модуль нуля

Известно свойство:

Вот почему нельзя сказать, что абсолютная величина – положительное число: ноль не является ни отрицательным, ни положительным.

Модуль в квадрате

Модуль в квадрате всегда равен выражению в квадрате:

Примеры графиков с модулем

Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.

Пример 1.

Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.

Решение:

Объяснение: из рисунка видно, что график симметричен относительно оси Y.

Пример 2. Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.

Решение:

Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)).

Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.

Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.

Заключение

Самое важное, что нужно знать: модуль не может быть отрицательным.

Поэтому, если представлено выражение, похожее на |2 – 4x| = –7 стоит помнить, что равенство неверно даже без поисков ответов.

В качестве итогов, напомним все свойства, которые помогут в решении задач:

  • когда положительное число находится внутри модуля, достаточно просто избавиться от него,
  • если есть выражение, нужно его упростить, прежде чем найти абсолютное значение,
  • если равенство содержит две переменные, нужно решать его с помощью системы уравнений и за основу брать методы решения выражений с абсолютными величинами.

Решать равенства и неравенства можно разными способами, но лучше всего использовать графический способ или метод интервалов.

Источник: https://tvercult.ru/nauka/modul-chisla-znak-svoystva-deystviya-kak-nayti-primeryi-grafikov

Юрист ответит
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: