Создание искусственной гравитации. Проблема невесомости: искусственная гравитация за счет вращения

Искусственная гравитация в Sci-Fi — Бородокаст

Создание искусственной гравитации. Проблема невесомости: искусственная гравитация за счет вращения

Вы можете не интересоваться космосом, но наверняка читали о нем в книгах, видели в фильмах и играх. В большинстве произведений, как правило, присутствует гравитация — мы не обращаем на нее внимания и воспринимаем как данность. Вот только это не так.

Если не углубляться в физику дальше школьного курса, то гравитация — фундаментальное взаимодействие тел, благодаря которому все они притягивают друг друга.

Массивные притягивают сильнее, меньшие — слабее.

Земля это как раз такой массивный объект. Поэтому люди, животные, здания, деревья, травинки, смартфон или компьютер — все притягивается к Земле. Мы к этому привыкли и никогда не задумываемся о такой мелочи.

Главное следствие притяжения Земли для нас — ускорение свободного падения, также известное как g. Оно равно 9,8 м/с². Любое тело при отсутствии опоры будет одинаково ускоряться к центру Земли, набирая 9,8 метров скорости каждую секунду.

Благодаря этому эффекту мы ровно стоим на ногах, различаем «верх» и «низ», роняем вещи, и так далее. Убери притяжение Земли — и все привычные действия перевернутся с ног на голову.

Лучше всего это знают космонавты, которые проводят существенную часть своей жизни на МКС. Они заново учатся пить, ходить, справлять базовые нужды.

Вот несколько примеров.

При этом в упомянутых фильмах, сериалах, играх и прочей фантастике гравитация на космических кораблях «просто есть». Создатели даже не объясняют, откуда она там появилась — а если и объясняют, то неубедительно. Какие-то «генераторы гравитации», принцип работы которых неизвестен. Это никак не отличается от «просто есть» — лучше вообще не объяснять в таком случае. Так честнее.

Теоретические модели искусственной гравитации

Создать искусственную гравитацию можно несколькими способами.

Много массы

Первый (и самый «правильный») вариант — увеличить корабль, сделать его очень массивным. Тогда гравитационное взаимодействие будет обеспечивать требуемый эффект.

Но нереальность данного способа очевидна: для такого корабля нужно очень много материи. Да и с равномерностью распределения гравитационного поля нужно что-то делать.

Постоянное ускорение

Так как нам нужно достичь постоянного ускорения свободного падения в 9,8 м/с², то почему бы не сделать космический корабль в виде платформы, которая будет ускоряться перпендикулярно своей плоскости с этим самым g?

Таким образом нужный эффект будет достигнут — но есть несколько проблем.

Во-первых, нужно откуда-то брать топливо для обеспечения постоянного ускорения. И даже если кто-то вдруг придумает двигатель, который не требует выброса материи, закон сохранения энергии никуда не пропадет.

Во-вторых, проблема заключается в самой природе постоянного ускорения. Наши физические законы гласят: ускоряться вечно нельзя. Теория относительности же говорит обратное.

Даже если корабль периодически будет менять направление, для обеспечения искусственной гравитации он должен постоянно куда-то лететь. Никаких зависаний вблизи планет. Если корабль остановится, то гравитация пропадет.

Так что и такой вариант нам не подходит.

Карусель-карусель

А вот тут уже начинается самое интересное. Все знают, как работает карусель — и какие эффекты испытывает человек в ней.

Всё, что находится на ней, стремится выскочить наружу соразмерно скорости вращения. Со стороны карусели же получается, что на все действует сила, направленная вдоль радиуса. Вполне себе «гравитация».

Таким образом, нам нужен корабль в форме бочки, который будет вращаться вокруг продольной оси. Такие варианты довольно часто встречаются в научной фантастике.

При вращении вокруг оси возникает центробежная сила, направленная вдоль радиуса. Поделив силу на массу, мы получим искомое ускорение.

Высчитывается все это по незамысловатой формуле:

a=ω²R,

где a — ускорение, R — радиус вращения, а ω — угловая скорость, измеряемая в радианах в секунду (радиан это примерно 57,3 градуса).

Что нам нужно для нормальной жизни на воображаемом космическом крейсере? Комбинация радиуса корабля и угловой скорости, чье производное выдаст в итоге 9,8 м/с².

Нечто подобное мы видели в ряде произведений: «2001 год: Космическая одиссея» Стэнли Кубрика, сериал «Вавилон 5», «Интерстеллар» Нолана, роман «Мир-Кольцо» Ларри Нивена, вселенная игр Halo.

Во всех них ускорение свободного падения примерно равно g — все логично. Однако и в этих моделях существуют проблемы.

Проблемы «карусели»

Самую явную проблему, пожалуй, проще всего объяснить на примере «Космической одиссеи». Радиус корабля составляет примерно 8 метров — для достижения ускорения, равного g, требуется угловая скорость примерно в 1,1 рад/с. Это примерно 10,5 оборотов в минуту.

При таких параметрах в силу вступает «эффект Кориолиса» — на разной «высоте» от пола на движущиеся тела действует разная сила. И зависит она от угловой скорости.

Так что в нашей виртуальной конструкции мы не можем вращать корабль слишком быстро, поскольку это приведет к внезапным падениям и проблемам с вестибулярным аппаратом. А с учетом формулы ускорения, не можем мы себе позволить и маленький радиус корабля.

Поэтому модель «Космической одиссеи» отпадает. Примерно та же проблема и с кораблями в «Интерстелларе», хотя там с цифрами уже все не так очевидно.

Вторая проблема находится с другой стороны спектра. В романе Ларри Нивена «Мир-Кольцо» корабль представляет собой гигантское кольцо с радиусом, примерно равным радиусу земной орбиты (1 а.е. ≈ 149 млн км). Таким образом он вращается с вполне удовлетворительной скоростью для того, чтобы человек не заметил эффект Кориолиса.

Казалось бы — все сходится, но и тут есть проблема. Один оборот займет 9 дней, что создаст огромные перегрузки при таком диаметре кольца. Для этого нужен очень крепкий материал. На данный момент человечество не может произвести такую прочную конструкцию — не говоря уже о том, что где-то нужно взять столько материи и еще все построить.

В случае с Halo или «Вавилоном 5» все предыдущие проблемы вроде отсутствуют: и скорость вращения достаточная, чтобы эффект Кориолиса не имел негативного воздействия, и построить такой корабль реально (гипотетически).

Но и у этих миров есть свой минус. Имя ему — момент импульса.

Раскручивая корабль вокруг оси, мы превращаем его в гигантский гироскоп. А отклонить гироскоп от своей оси сложно из-за момента импульса, количество которого должно сохраняться в системе. А значит, лететь куда-то в определенном направлении будет тяжело. Но эта проблема решаема.

Как должно быть

Называется это решение «цилиндр О’Нила»: берем два одинаковых корабля-цилиндра, соединенные вдоль оси и вращающиеся каждый в свою сторону. В результате мы имеем нулевой суммарный момент импульса, и проблем с направлением корабля в нужном сторону быть не должно.

При радиусе корабля в 500 метров и более (как в «Вавилоне 5») все должно работать как надо.

Какие мы можем сделать выводы о реализации искусственной гравитации в космических кораблях?

Изо всех вариантов самым реальным выглядит именно вращающаяся конструкция, в которой сила, направленная «вниз», обеспечивается центростремительным ускорением. Создать же искусственную гравитацию на корабле с плоскими параллельными конструкциями вроде палуб, учитывая наше современные понимание законов физики, невозможно.

Радиус вращающегося корабля должен быть достаточным, чтобы эффект Кориолиса был незначительным для человека. Хорошими примерами из придуманных миров могут служить уже упоминавшиеся Halo и «Вавилон 5».

Для управления такими кораблями нужно построить цилиндр О’Нила — две «бочки», вращающиеся в разном направлении для обеспечения нулевого суммарного момента импульса для системы. Это позволит адекватно управлять кораблем — вполне реальный рецепт обеспечения космонавтов комфортными гравитационными условиями.

И до того момента, как мы сможем построить нечто подобное, хотелось бы, чтобы фантасты уделяли больше внимания физической реалистичности в их произведениях.

Источник: https://beardycast.com/article/science/iskusstvennaja-gravitacija-v-sci-fi/

Привет от Циолковского: как искусственная гравитация осваивает космос

Создание искусственной гравитации. Проблема невесомости: искусственная гравитация за счет вращения

Наш вид на удивление хорошо переносит самый безумный набор условий.

Мы выживаем при давлении в 70 атмосфер, после минуты в глубоком вакууме или полугода космической радиации вне магнитосферы Земли и всё это без видимого ущерба для здоровья.

Однако у человека в космосе есть противник куда более страшный, чем космическая радиация, — безделье. А точнее, отсутствие приличной физической нагрузки.

Каждый из нас знает, что посредственный бегун загонит лучшую в мире лошадь. Но из-за того что современная цивилизация не нагружает нас физически, большинство жителей стран типа России не могут загнать не то что лошадь, но и обычную собаку.

То же самое, но в гораздо больших масштабах случается с человеком, долго живущим в невесомости.

Формально на МКС гравитация всего на 11 процентов слабее земной, однако, поскольку космонавты там постоянно “падают вперёд” со скоростью полёта станции, почувствовать её невозможно.

Это ведёт к огромному количеству неприятных последствий. Мышцы с неполной загрузки цивилизованного человека переходят на вообще нулевую. Они атрофируются, из-за этого кислорода организмом потребляется куда меньше нормы.

Костный мозг, вырабатывающий гемоглобин для переноса кислорода в крови, резко “снижает план”. Кальций в невесомости усиленно вымывается из организма, что негативно влияет на прочность костей, способствуют этому и нарушения фосфорного обмена в костях.

Ну а результат — космическая остеопения, означающая потерю одного процента массы костей за месяц невесомости.

Предположительно после потери 20 процентов человеческий скелет станет малопригоден к работе в земных условиях.

Наконец, пониженная гравитация со временем ведёт к деградации зрения — его правильная работа ведь тоже зависит от получения регулярных нагрузок, которых в космосе мало. Можно поставить на МКС беговую дорожку для ног, но глазное яблоко на неё не загонишь.

Много ли толку будет от потенциального покорителя Марса, если он не будет видеть, его скелет не вынесет нагрузок, а мышцы не позволят вылезти из космического корабля?

Запугиваете?

Нам скажут: вы нагнетаете. В самом деле, полёт к Марсу даже на химических двигателях продлится всего полгода. Ещё по станции “Мир” хорошо известно, что и после года в космосе космонавт, работающий с тренажером, вполне может сам дойти до автобуса несмотря на 1 g (силы тяжести, действующей на единицу массы).

На том же Марсе всего 0,38 g, о чём разговор? Да, путешествие на Красную планету — это минимум год при пониженной гравитации на ней, и ещё полгода на возвращение.

Но и при этом “дефицита тяжести” люди испытают ничуть не больше, чем Валерий Поляков, который после своих рекордно долгих полётов успешно работал на Земле, не утратив ни зрения, ни подвижности.

И всё же повод для беспокойства есть. Марсом Солнечная система не кончается.

Чтобы слетать к Церере с её подповерхностным океаном (где не исключено наличие жизни), топлива надо даже меньше, чем для полета к Луне. Но вот по времени туда лететь куда дальше, чем к Марсу.

Так что, пока Роскосмос не сделает полномасштабный ядерный буксир, освоение действительно далёких от Земли небесных тел под большим вопросом.

Звезда КЭЦ

Константин Циолковский задумался над эти вопросом ещё 113 лет назад и уже тогда пришёл к выводу, что на будущих космических кораблях нужна искусственная гравитация.

Самым простым способом её создания он полагал вращающийся космический корабль, возможно, округлой формы. За счёт вращения люди в нём будут избавлены от невесомости.

Известный роман советского фантаста Александра Беляева описывал целый орбитальный городок, созданный по такой схеме (“Звезда КЭЦ”, по инициалам Циолковского).

Такой корабль Королёв начал проектировать для Луны и Марса ещё в 1963 году. Чтобы уменьшить его размеры, он предложил использовать противовес — систему связанных между собой тел, вращающихся в космосе.

Для орбитального корабля противовесом должна была стать пустая последняя ступень ракеты-носителя, которую сегодня просто выбрасывают.

Однако из-за известного отказа советского руководства от полётов за пределы земной орбиты всему этому не суждено было сбыться.

Позднее в СССР было установлено, что при скорости вращения помещения в шесть оборотов в минуту побочные эффекты вращения (сила Кориолиса) уже не будут чувствоваться.

Однако при такой скорости вращения “гравитационный корабль” должен иметь размеры в десятки метров.

Понятно, что пока мы летаем на одноразовых ракетах, такой крупный объект всегда будет слишком дорог для Роскосмоса. Есть ли более дешёвое решение?

Малые гравитационные формы

Ещё в XVIII веке дед Чарльза Дарвина обнаружил, что, посадив человека на аналог круглых качелей и раскручивая их, можно добиться скорости, при которой он почувствует приличное ускорение.

В 1933 году Германия — научно-технический лидер тогдашнего мира — создала первую центрифугу для изучения влияния искусственной гравитации на человека. При размере всего в 2,7 метра она могла дать до 15 g.

Если нам нужна в пятнадцать раз меньшая сила тяжести, центрифугу можно сделать такой, как у Института медико-биологических проблем, чтобы её вращение не было утомительно быстрым.

Как ни странно, такие устройства были бы полезны не только космонавтам. Тело человека рассчитано на огромную мобильность: его предки пробегали десятки километров в день, а письменные источники фиксируют и случаи с сотнями километров в сутки.

Заставить цивилизованных потомков заниматься спортом нереально, поэтому у нас вечные проблемы с сосудами ног, да и их переломы заживают медленнее, чем могут. Пребывание в условиях повышенной гравитации полезно и при лечении сосудов нижних конечностей, и при ускорении регенерации костных тканей после переломов.

Исследуется и эффективность центрифуг при лечении гипертонической болезни. Таким образом, перед нами типичный случай, когда космические технологии вполне могут принести большую пользу и на Земле.

В компактном варианте, показанном выше, центрифугу малого радиуса можно использовать не только для периодических тренировок в “тренажёрном зале” орбитальной станции, но и для сна.

Вам кажется, что на вращающейся платформе вряд ли уснёшь? Вовсе нет: тот же дед Дарвина успешно использовал её, чтобы вызвать сон у лиц с сомнологическими расстройствами.

В случае, если космонавты будут проводить там по восемь часов в сутки, о “гравитационных” проблемах на космических кораблях можно забыть как минимум до эпохи межзвёздных перелётов.

Конечно, слишком маленькой центрифугу в космосе лучше не делать, иначе сила тяжести на уровне головы будет существенно ниже, чем на уровне ног.

Только эксперименты помогут выяснить, правильные ли размеры для неё подобрали в Роскосмосе, а значит, эти эксперименты на орбите просто неизбежны.

Пока Россия здесь делает только первые шаги — даже двигатель для центрифуги на видео выше пришлось покупать в Австрии, поскольку в нашей стране таких пока не делают. И тем не менее весь этот проект вполне реален.

Более чем десятилетие назад NASA задумало создать на МКС свой спецмодуль для центрифуги, однако из-за использования Агентством для сборки МКС безумно дорогих шаттлов проект “не взлетел” по финансовым ограничениям (хотя модуль для него уже был создан).

И вот теперь, как ни странно, Роскосмос может стать первой в мире организацией, которая вытащит аппарат “искусственной гравитации” в космос и опробует его на людях. Для снижения затрат на доставку  на орбиту спецмодуля для размещения центрифуги, его сделают надувным (точнее, газоразвертываемым).

Тогда на “завоз” всех нужных узлов уйдёт не так уж много рейсов.

Что это обещает в ближайшем будущем? Пока не так много: первые полёты к Марсу будут слишком ограничены по массе полезной нагрузки. Даже весьма нужная центрифуга на корабль вряд ли поместится. Гораздо лучше с полезной нагрузкой в варианте ядерного буксира.

Но тот будет лететь к Марсу так недолго, что смысл создания там “гравиубежища” неясен.

И всё же, как мы отмечали выше, четвёртой планетой Солнечная система не заканчивается, так что за центрифугами короткого радиуса, скорее всего, будущее пилотируемой космонавтики.

Материалы по теме:

В большой космос по малой нужде

“Такие дни”: женская гигиена в космосе. Сложно, но можно!

Атакуем Марс!

Источник: https://life.ru/p/929968

Искусственная гравитация: от «Космической одиссеи» Кубрика до античастицы

Создание искусственной гравитации. Проблема невесомости: искусственная гравитация за счет вращения

Проблемы с вестибулярным аппаратом — не единственное последствие длительного пребывания в условиях микрогравитации. Астронавты, которые проводят на МКС больше месяца, часто страдают от нарушения сна, замедления работы сердечно-сосудистой системы и метеоризма.

Недавно НАСА завершило эксперимент, в ходе которого ученые сравнили геном братьев-близнецов: один из них провел на МКС почти год, другой совершал лишь кратковременные полеты и большую часть времени находился на Земле.

Долговременное пребывание в космосе привело к тому, что 7% ДНК первого астронавта изменились навсегда — речь идет о генах, связанных с иммунной системой, формированием костной ткани, кислородным голоданием и избыточным количеством углекислого газа в организме.

НАСА сравнила астронавтов-близнецов, чтобы увидеть, как тело человека меняется в космосе

В условиях микрогравитации человек будет вынужден бездействовать: речь идет не о пребывании астронавтов на МКС, а о полетах в глубокий космос.

Чтобы выяснить, как такой режим повлияет на здоровье астронавтов, Европейское космическое агентство (ESA) на 21 день положило 14 добровольцев в наклоненную в сторону головы кровать.

Эксперимент, который позволит на практике проверить новейшие методы борьбы с невесомостью — такие как улучшенные режимы физических упражнений и питания — намерены совместно провести НАСА и Роскосмос.

Но в случае, если люди решат отправить корабли к Марсу или Венере, понадобятся более экстремальные решения — искусственная гравитация.

Как гравитация может существовать в космосе

Прежде всего стоит понять, что гравитация существует везде — в некоторых местах она слабее, в других сильнее. И космическое пространство не является исключением.

МКС и спутники находятся под постоянным влиянием гравитации: если объект находится на орбите, он, говоря упрощенно, падает вокруг Земли.

Подобный эффект возникает, если бросить мяч вперед — прежде чем упасть на землю, он немного пролетит в направлении броска. Если бросить мяч сильнее, он пролетит дальше.

Если вы супермен, а мяч — ракетный двигатель, он не упадет на землю, а облетит вокруг нее и продолжит вращаться, постепенно выходя на орбиту.

Микрогравитация предполагает, что люди внутри корабля не находятся в воздухе — они падают с корабля, а тот, в свою очередь, падает вокруг Земли.

Благодаря тому, что гравитация является силой притяжения между двумя массами, мы остаемся на поверхности Земли, когда идем по ней, а не уплываем в небо. В этом случае вся масса Земли притягивает массу наших тел к своему центру.

Когда корабли выходят на орбиту, они свободно плавают в космическом пространстве. Они по-прежнему подвержены гравитационному притяжению Земли, но корабль и находящиеся в нем предметы или пассажиры подвержены гравитации одинаково. Существующие аппараты недостаточно массивны, чтобы создать заметное притяжение, поэтому люди и предметы в нем не стоят на полу, а «плавают» в воздухе.

Как создать искусственную гравитацию

Искусственной гравитации как таковой не существует, чтобы ее создать, человеку необходимо узнать всё об естественной гравитации. В научной фантастике существует концепция имитации гравитации: она позволяет экипажу космических кораблей ходить по палубе, а предметам стоять на ней.

В теории существует два способа создать имитацию гравитации, и ни один из них пока не был использован в реальной жизни. Первый — это использование центростремительной силы для моделирования силы тяжести. Корабль или станция при этом должны представлять собой колесоподобную конструкцию, состоящую из нескольких постоянно вращающихся сегментов.

Согласно этой концепции, центростремительное ускорение аппарата, толкающее модули к центру, создаст подобие гравитации или условия, аналогичные земным. Эта концепция была продемонстрирована в «Космической одиссее 2001 года» Стенли Кубрика и в фильме «Интерстеллар» Кристофера Нолана.

Концепция аппарата, создающего центростремительное ускорение для имитации гравитации

Автором этого проекта считается немецкий ученый-ракетчик и инженер Вернер фон Браун, который руководил разработкой ракеты «Сатурн-5», доставившей на Луну экипаж «Аполлон-11» и еще несколько пилотируемых аппаратов.

Будучи директором Центра космических полетов имени Маршалла НАСА, фон Браун популяризировал идею российского ученого Константина Циолковского о создании тороидальной космической станции на основе конструкции со ступицами, напоминающей велосипедное колесо.

Если колесо вращается в пространстве, то инерция и центробежная сила могут создать своего рода искусственную гравитацию, которая тянет предметы к внешней окружности колеса.

Это позволит людям и роботам ходить по полу, как на Земле, а не плавать в воздухе, как на МКС.

Однако у этого метода есть существенные недостатки: чем меньше космический корабль, тем быстрее он должен вращаться — это приведет к возникновению так называемой силы Корнолиса, при которой на точки, расположенные дальше от центра, сила тяжести будет влиять сильнее, чем на более близкие к нему. Другими словами, сила тяжести будет действовать на голову астронавтов сильнее, чем на ноги, что вряд ли им понравится.

Чтобы избежать этого эффекта, размер корабля должен в несколько раз превышать размер футбольного поля — вывод такого аппарата на орбиту будет стоить крайне дорого, учитывая, что стоимость одного килограмма груза при коммерческих запусках варьируется от $1,5 тыс. до $3 тыс.

Другой метод создания имитации гравитации более практичен, но также крайне дорог — речь идет о методе ускорения. Если корабль на определенном отрезке пути сначала будет разгоняться, а затем развернется и начнет тормозить, то возникнет эффект искусственной гравитации.

Для реализации этого метода потребуются колоссальные запасы топлива — дело в том, что двигатели должны работать почти непрерывно за исключением короткого перерыва в середине пути — во время разворота корабля.

Реальные примеры

Несмотря на высокую стоимость запуска аппаратов с имитацией гравитации, компании по всему миру пытаются построить такие корабли и станции.

Реализовать концепцию Фон Брауна пытается компания Gateway foundation — исследовательский фонд, который планирует построить вращающуюся станцию на орбите Земли.

Предполагается, что по окружности колеса будут располагаться капсулы, которые смогут покупать государственные и частные аэрокосмические компании для проведения исследований.

Некоторые капсулы будут проданы в качестве вилл самым богатым жителям Земли, а другие будут использоваться как отели для космических туристов.

Стыковочный отсек будет находится в центре станции — оттуда людей и грузы будут доставлять на лифтах в капсулы.

Способ привлечения денег компания выбрала неоднозначный: она намерена организовать лотерею, победители которой помимо денежного вознаграждения получат возможность бесплатно полететь на станцию и провести ночь в ее капсуле. Когда аппарат будет выведен на орбиту, в компании не раскрывают.

Над созданием аппарата с искусственной гравитацией для проведения долговременных космических исследований работала и НАСА. В 2011 году космическое агентство представило концепцию вращающегося космического корабля с надувными модулями Nautilus-X, который должен был снизить влияние микрогравитации на ученых, находящихся на его борту.

Предполагалось, что проект будет стоить всего $3,7 млрд — очень мало для подобных аппаратов, — а на его строительство потребуется 64 месяца. Однако Nautilus-X так и не вышел за рамки первоначальных чертежей и предложений.

Вывод

Пока самый вероятный способ получить имитацию гравитации, которая защитит корабль от последствий ускорения и даст постоянное притяжение без необходимости постоянно использовать двигатели — это обнаружить частицу с отрицательной массой.

Все частицы и античастицы, которые ученые когда-либо обнаружили, имеют положительную массу.

Известно, что отричательная масса и гравитационная масса равны друг другу, однако пока исследователям не удавалось продемонстрировать это знание на практике.

Исследователи из эксперимента ALPHA в ЦЕРНе уже создали антиводород — стабильную форму нейтрального антивещества — и работает над его изоляцией от всех других частиц на очень низких скоростях. Если ученым удастся это сделать, вероятно, в ближайшее время искусственная гравитация станет реальнее, чем сейчас.

Источник: https://hightech.fm/2019/05/01/gravity-space

Юрист ответит
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: